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PREFACE

Turbulence is discussed in this module as a mode of transport for

mass and energy between organisms and their environment, The reader is

Assumed to have an interest in and previous exposure to problems in ecology.

This module is intended to be an introduction to concepts and applications

of turbulence, but the reader should be familiar with calculus in order to

understand the mathematical models. Empirical techniques and actual data

are used throughout for added realism and model verification.
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INTRODUCTION

Virtually every interaction between organisms and their environment

involves the transport or exchange of either mass or energy. Transport

processes of particular emphasis in this series of modules include heat

transfer and the mass fluxes of water vapor, carbon dioxide and other trace

contaminants. For example, Stevenson (1979a) (see also Monteith 1973) has

shown that by use of the concept of conservation of energy, which follows from

the First Law of Thermodynamics, one can quantitatively describe the balance

of energy inputs, outputs and production (e.g., metabolism) which is necessary

to understand temperature dependent biological processes. Since many mass

fluxes of interest are directly related to energy production or consumption

(e.g., oxygen and respiration, carbon dioxide and photosynthesis, water vapor

and the latent heat of vaporization), they too should be included in an

energy balance description.

The next step in the development of a quantitative understanding of

organism/environment interactions is the development of explicit expressions

for each of the terms in the energy balance. Several of the terms in such

a balance represent the flux of a quantity through a fluid, which for our

purposes is usually water or air. Consequently, the transport will be highly

dependent upon fluid motion and this is the rub. The flow of real fluids

tends to be quite complicated, that is, turbulent. As a matter of fact, most

flows occurring in nature are turbulent. Tennekes and Lumley (1972) present

a representative listing of such flows. Included are ocean currents, river

flow, combustion processes, the photosphere of the sun, the solar "wind," flow

around birds' wings, a fish's wake, and the earth's atmosphere--especially

trophospheric jet streams and wind fields near the earth's surface. As a
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result of the ubiquitous nature of turbulent flows, it is necessary to come

to some sort of understanding about their behavior, in order to be able at

last to accomplish that which we started out to do: quantify organism/

environment interactions.

It is interesting to note in the modules of this series concerned with

such interactions that while heat transfer by radiation (e.g., Gates and Stevenson

1979 and Roseman 1979) and conduction (e.g., Simpson 1979a) can be expressed in exact

analytic forms, the remaining major terms of the energy budget, convection and

evaporation are treated empirically. For example,. Stevenson (1979a) gives

evaporation as a function of air temperature only because "water loss is a

complex process," while Gates (1979a) and Hatheway (1979) give expressions

for convective heat transfer that include various complex empirical functions

of wind speed, In fact, if one were to inspect any one of a number of texts

dealing with transport processes (e.g., Tanner 1968, Monteith 1973 and 1975,

Campbell 1977), a variety of ways would be found to quantify convection and

evaporation, all of which are empirical. In practice, then, the attempt to

solve problems involving turbulent flow exactly is often discarded in favor

of the more expedient and, hopefully, useful empirical formulas.

In describing the energy and mass exchanges relevant to biological

systems, an empirical description of turbulence is not only useful but usually

essential. The practical question remaining for the physiologist or ecologist

is how much and what sort of empirical scheme best suits a particular problem.

A sound answer requires at least a modicum of understanding of the basic

physical process involved: turbulence. This module introduces some of the

basic terminology and concepts of turbulence theory, along with relevant

examples. These concepts are used to develop the basic form of the most

widely used semi-empirical flux relationships, the so-called "K-theory."



www.manaraa.com

-3 -

DESCRIPTION OF TURBULENCE

What is turbulence? Perhaps the only generally agreed upon response

to this question is that turbulence is difficult to define! Generally, the

answer takes the form of a list of the characteristics of turbulent flows,

such as is done by Lumley and Panofsky (1964, p.3 ff) and Tennekes and Lumley

(1972, p.1 ff). Campbell (1977) presents a more elementary discussion of two

of these characteristics, probably the easiest to conceptualize,

while still conveying the ideas important for this discussion: variability

and diffusivity.

Variability

Anyone who has observed the plume from a smokestack and noticed the

irregularity of the force of the wind on a gusty day, or simply lain on his

back and witnessed the random evolution of a cumulus cloud, has an appreciation

of the variability of turbulence. For example, consider the wind record of

Fig. 1 It gives three one-minute records of the elevation angle from a

bidirectional wind vane. Such a wind vane can rotate in the horizontal plane

(azimuth) as well as around a horizontal axis perpendicular to the mean wind

(elevation). Notice that only a total of seven minutes has elapsed from the

first to the last record. The intermittency of the turbulence is illustrated

by the marked difference between the record from 1337-1338 and the other two.

Consider the problem of predicting the motion of atmospheric contami-

nants such as pollen, fungal spores, or pollutants with such variable winds.

If the time period of interest is short, the analysis can indeed become

difficult.
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Fig. 1. Bidirectional vane record of elevation for
three one-minute perioes on July 19, 1962
at Douglas Point, Canada.

The obvious problem is how to quantify something that is, in effect,

unpredictable. The answer lies in the use of statistical methods. Fortunately,

it turns out that detailed information on the flow field is not necessary,

and such simple methods as utilizing time averages of the quantities of

interest will suffice in many cases, provided sufficient averaging time is

allowed. This is fortunate for another reason. As discussed briefly by

Cowan (1979a) (and more completely by Tennekes and Lumley (1972)), equations

of motion do exist which in general describe the motion of any fluid. However,

the solutions to these equations appear to be so sensitive to minute changes

in a given set of experimental conditions that one could never measure these

conditions in sufficient detail to permit detailed prediction of the flow

(Lumley and Panofsky 1964). In mathematical parlance, this difficulty is

caused by the high degree of nonlinearity in the set of partial differential

equations applicable. This results in the solution being very sensitive to

the given set of conditions (i.e., the boundary conditions).

9
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Turbulence is variable in space as well as time. Campbell's (1977)

examples of fields of "waving grain" or "cat's paws" on a lake point this out

particularly well.

In fact, this variability in both space and time is quite large.

Campbell (1977) illustrates the extremes of these temporal and spatial

scales by comparing wind gusts large enough to shake a house to the very small

scale "heat waves" that can be observed over a hot surface such as an asphalt

highway on a hot day. This large variation in the scales of turbulence has

two important consequences. First, one must be cautious when making the

analogy between turbulent and molecular transport (diffusion). This problem

will be treated later in the discussion of diffusivity. Second, there is

the practical problem of the limits imposed by the finite (computational) speed

of computers.

Notwithstanding the fact that the equations of motion (known as the

Navier-Stokes equations) are extremely sensitive to their boundary conditions,

their solution is still difficult for problems in atmospheric turbulence due

to the wide range of scales involved. As an illustration, consider the

complexity of one of the simplest problems: channel flow. Figure 2 illus-

trates a channel of infinite horizontal dimension and of height H=15 cm, with

a fluid moving from left to right with a maximum velocity (u) of 1 m s1.

H --÷ u

Figure 2. Fluid movement in an infinite channel.

.10
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Suppose one is required to solve the equations of motion for the velocity

and pressure fields. The given dimension and the velocity will give a

Reynolds number (Re) of -104. The Reynolds number is discussed more fully

in the section on the origins of turbulence, so it will suffice to say here

that it is a general indicator of whether a flow is turbulent. Re is defined as

Re
udp

1.1 '

where u is velocity, p density and p is tLe dynamic viscosity of the fluid,

and d is a characteristic dimension of the flow. In this example, then,

Re =
lm s

-1
x 0.15m x 1.2 kg m

3

104
-

.18 x 10
4
kg m

-1
s

1

yhich indicates a well-developed turbulent flow.

To estimate the computational effort involved here, one must resolve

the largest and smallest eddies (turbulence scales) in the flow. Turbulence

theory (see Tennekes and Lumley 1972, p. 21) tells us that the ratio of the

large to small eddies will be proportional to (Re)
3/4

. If we designate the

size of the small-scale eddies as n, we can write this ratio as

7 (Re)
3/4

= 1000

It turns out that there are four equations of motion, which are nonlinear

and thus require a numerical solution technique such as finite differences.

In turn, this necessitates that a grid network be set up in three dimensions,

and the equations solved simultaneously at each point. The number of grid

points necessary in both directions perpendicular to the flow will be 2000,

assuming two points are required to define an eddy. In the direction of flow,
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the eddy size would not thus be limited, so we'll assume 20,000 are required.

Hence the number of grid points equals 2000 x 2000 x 20000 loll.
Assuming

nthe four motion equations with four unknowns require at least 102 operations

per grid point, then the total number of operations per time step would be

equal to 10
2

x 10
11

= 10
13

. If a minimum of 10
2

time steps are required to

obtain a meaningful solution, the total number of operations necessary becomes

10
15

Now the time per operation on available computers is -0.11.1 s or

10
7

s which means the time required would be 10
7
x 10

15
= 10

8
s or

approximately three years. Considering the fact that the range of scales

found in nature may be up to a factor of 10
4

to 10
5

greater than that considered

here, such an approach clearly must wait for much faster computers.

Although the numerical solution to the turbulence problem will remain

beyond reach for the foreseeable future, this should not be viewed by the

biologist as an entirely negative result. In fact, the semi-empirical

approach (as pointed out in the Introduction) is in many ways more suited to

the type of analysis likely to be needed by, say, a physiologist or ecologist.

Consider the various energy budgets involved in the examples of Stevenson

(1979b). All that is required in the stream flow, leaf, or spider example is

a reliable estimate of the various fluxes of energy; details about how these

fluxes occur are secondary. However, this should not be taken to minimize

the importance of more detailed characteristics of turbulent flow fields in

other cases of biological interest. Examples of this latter case include

nutrient diffusion to plankton, location and size of stream insects, mobility

and habitat of flying insects, aerosol dispersion, leaf shapes and character-

istics, and even bird wing shape. Ultimately, it is important that the

biologist should at least realize the general nature of the problem of

12
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turbulent flow as a prerequisite to determining the proper mix of analytic

and empirical methods.

Diffusivity

"The outstanding characteristic of turbulent motion is its ability to

transport or mix momentum, kinetic energy, and contaminants such as heat,

particles, and moisture" (Tennekes and Lumley 1972, p. 9). Without turbulent

transport, life on the earth would either suffocate due to the slow rate of

diffusion of CO
2
or 0

2
from the upper layers of the atmosphere or be poisoned

by the buildup of pollutants near the surface. This is well illustrated by a

simple example taken from Monteith (1973, p. 134). The amount of CO2 required

by a healthy crop canopy over the course of a day is equivalent to all the

CO
2
in the first 30m of the atmosphere. The actual diurnal variation of CO

2

concentration in this layer rarely exceeds 15% of the mean concentration.

These figures suggest turbulent transfer supplies CO2 from as high as 30m/.15=

200m. In fact, measurements have detected small diurnal fluctuations as high

as 500m. Apparently, a relatively rapid means of transport must be supplying

CO
2

from above the surface layer to the plants.

To understand more fully why turbulence has such effective mixing

properties, it is useful to compare turbulent exchange with the other mode of

exchange important in transport processes, that of molecular diffusion.

(See also Cowan 1979b or Tennekes and Lumley 1972.) Molecular diffusion is

a mixing process dependent upon exchange at the molecular level. Consequently,

its characteristic length scale is the mean free path between molecular colli-

sions, typically 7X10 8m for air at room temperature and pressure. Since the

root mean square velocity for air molecules under similar conditions is

approximately 480m s
-1

, the characteristic time scale is quite small
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(7x108m/480m s-1 = 1.5x101° s). Even though the interactions (collisions)

are quite frequent, the small characteristic lengths over which they act tend

to diffuse properties with large scales relatively slowly. (As an example of

a property with a large scale, one might consider heat exchange between the

warm ground and cooler atmosphere, typically up to heights of 1 kilometer on

a warm, sunny day.) As implied in our earlier example of channel flow, the

characteristic exchange length (scale) for turbulent exchange is limited only

by the dimension of the flow boundaries. Consequently, in the lowest 30m or

so of the atmosphere (the surface layer), the characteristic exchange length

for the transport at a particular height z will be of the order of z. This is

because the basic unit of exchange for turbulent flow is what is commonly

termed an "eddy," which may be envisioned as a parcel of air in rotational

motion which tends to retain its identity and remain relatively intact for a

finite distance and time, In other words, we simply consider the random motion

of "bunches" of molecules rather than that of individual molecules. The result

is mass transport of such quantities as heat over distances of the same order

as the size of the eddy, a scale obviously much larger than that in molecular

diffusion. More will be said about eddies later on in this section.

A simple example based on Tennekes and Lumley (1972) illustrates the

extremely diffusive nature of turbulence by contrasting it with molecular

diffusion. Consider the cross-sectional diagram of a room in Fig. 3, with a

radiator in one corner. The question is posed, "How long will it take to heat

the room?" The answer, besides clarifying what we mean by diffusivity, gives

several insights into common "tricks of the trade" in turbulence theory.

14
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radiant
heater

L

Figure 3. Convection currents.

The first step in tackling this problem will be to make some appropri-

ate simplifying assumptions. Assume for the moment that gravity is ignored

so that no convective currents (such as illustrated in Fig. 3) will be

produced. Consequently, heat transfer is possible only through molecular

diffusion. This process is governed by a diffusion type equation (Simpson

1979, or Tennekes and Lumley 1972) of the sort

ae
aT

= yV 2 ,

where 0 is temperature, T is time, y is thermal diffusivity, and V2 is the

Laplacian operator.

The second step is to decide to obtain an order of magnitude (within

a factor of 10) estimate, rather than attempt the difficult task of obtaining

an exact detailed solution. Consequently, we will employ the tools of

dimensional analysis (see Fletcher 1979 or Vennard and Street 1975) to interpret

the diffusion equation dimensionally as

AO AO
T Y L2

Rearranging terms, one obtains an expression for the time scale Tm of the

molecular diffusion,

75
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m (1)

Notice that all diffusion processes are governed by this relation, where the

diffusivity relates a penetration distance to a time independent of the

quantity being diffused (notice that 0 cancels out). The dimensions of

diffusivity are always (L
2
/T). In the present example with L=5m and

y=2x10 5 m2 s
-1

, T
m

1.25x106 s or about 14 days. Such a long character-

istic time scale compared with the time actually required to heat a room

indicates that some other transfer process must be operating.

Removing the first simplifying assumption and allowing for the

presence of gravity leads to the weak convective circulation indicated in

Fig. 3. The heating of the radiator induces density differences in the air

that when acted upon by gravity cause "the hotter air to rise and the cooler

air to sink," so that the circulation illustrated is not unexpected. Therefore,

using dimensional analysis of the convective velocity in the room (tic); a

characteristic time for turbulent diffusion can be expressed as

T
t U

(2)

Notice that the dimensions of a length divided by velocity is a time. It is

assumed that the length scale of the turbulent motion in the air is charac-

terized by the length L. It certainly is no larger, and it seems reasonable

that the large eddy (illustrated by arrows in Fig. 3) will be most effective

in transport. It remains to estimate the convective velocity Uc. Experience

suggests that it must be small, somewhere on the order of Uc=.05 m s-1 (see

Tennekes and Lumley 1972). Then L=5m implies a Tt of about 100 s, In con-

clusion, it is clear that turbulence is much more efficient than molecular

16
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diffusion in the transport of quantities such as heat.

The considerations discussed in the example of the heating of the air

in the room can be extended to the situation in the atmosphere. It should be

made clear that the eddy sizes in the atmosphere, or in the room, are limited

in size by the flow boundaries. This only sets the upper limit, albeit the

most efficient for transport, as illustrated below. Actually, a whole range

of smaller eddy sizes exists, until they become so small that molecular forces

become significant. The turbulent structure in the atmosphere in simplest

terms can be envisioned as a whole series of eddies, such as in our room

example, being carried along by the mean wind, 11(z) (Fig. 4).

\\,0
'0,0 0 0
0 0 0 0

Figure 4. A range of eddies exists, with mean diameter k proportional to height z.

Notice that as height (z) increases, the eddies tend to become larger, since

the surface interferes less with the circulation. Also notice that in the

transference of some property, e.g., a warm air parcel, from point A to C, the

larger eddy will be the most efficient. This is because the larger eddy

transports the quantity of interest from A to C directly, avoiding the more

circuitous route and extra mixing that transfer by smaller eddies entails.

This latter concept is treated again in the section on K-theory.

Consider the following simple example which (1) illustrates the use
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of the proper statistical measures for dealing with the variability of a

turbulent flow, (2) points out an interesting use of the eddy concept in

dealing with turbulent diffusivity, and (3) is a good example of a case where

detailed knowledge of the turbulent flow structure is critical to solution

of a biological problem.

An important area of pulmonary research concerns the oxygenation of

pulmonary capillary blood. The factors that control this process are of

obidous importance, especially in the understanding and treatment of various

lung diseases. Briefly, the oxygen must cross the alveolar-capillary

membrands from the Ling air spaces, diffuse through the blood plasma, pass

through the blood cell membrane, diffuse through the cell interior, and

finally react chemically with the hemoglobin. Previously, it was assumed

that the alveolar-capillary membrane was responsible for most of the resistance

to oxygen diffusion. More recently, the turbulent flow properties of dilute

suspensions of red blood cells in small diameter tubes have been used to

study the resistance due to the cell membrane, interior, and reaction rates.

The premise of most of this research was that, since the flow was thought to

be turbulent, mixing of the red blood cells with the suspending medium would

be quite rapid. Consequently, it followed that an unmixed fluid layer

relatively depleted of oxygen would not exist, and hence would not contribute

to the diffusion resistance.

Carisen and Comroe (1958), by heat treatment of red cells, obtained

a spherical-shaped cell of identical vomume to the normal disk-shaped cell.

They found oxygen uptake to be the same for both shapes using the flow

apparatus, indicating that increasing the diffusion path length inside the

cell has no effect. Furthermore, the reaction rate of oxygen with hemoglobin

is ruled out as a factor by the comparison of oxygen and nitric oxide uptake,
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the latter of which reacts ten times as fast as the former with hemoglobin.

Again, no change in diffusion time was found by Carlsen and Comroe. Based on

the assumptions of turbulent flow and complete mixing, they concluded that

the red cell membrane was the chief source of resistance. However, other

investigators (e.g., Kreuzer and Yahr 1960) have compared the uptake rates of

similar layers of red cells and plain hemoglobin. Again, uptake rates were

the same, which apparently rules out the cell membrane as the source of

resistance. Which conclusion is in error?

Gad-el-Hak et al. (1977) have proposed an answer to the dilemma from

an analysis of the relevant turbulent properties of the flow fields involved.

They first of all clarify the criteria for true turbulent flow in such studies

(Re>3000). Evidence is then provided which indicates that, contrary to

previous thought, an unmixed fluid layer does exist next to the cell. This

can, of course, explain the aforementioned conflicting results. Envision, if

you will, a typical blood cell, being tossed and whirled about by the

turbulent fluid. This cell takes up oxygen, causing an area of oxygen deficit

in its immediate vicinity. The replenishment rate is dependent primarily upon

the size of the eddies and the length of time they exist relative to the

distance and time dependence of oxygen uptake by the cells. For example, if

the eddies are large relative to the cells, the cell will tend to move along

with the eddy. This circumstance tends to deplete the eddy of oxygen,

while at the same time not allowing the cell to come into effective contact

with other more oxygen rich eddies. Conversely, if the eddies are small

relative to the cell, the cell will tend to contact eddies more often, perhaps

several at a time. Hence, mixing is more effective, and diffusion resistance

is smaller. A further discussion of such time dependent phenomena is contained

in Problem 5.

1 9
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Further evidence to support this explanation was obtained by Gad-el-

Hak et al. through the use of sophisticated laser anemometry techniques to

measure the turbulent fluctuations, and various statistical measures to

quantify eddy sizes and velocities. (Details are not covered in this paper.

See Gad-el-Hak 1977 or Tennekes and Lumley 1972 for further discussion.)

In essence, their results show that the turbulent scales range from 0.07 mm

to 1.3 mm, as compared to the 0.008 mm dimension for a red blood cell.

Their analysis indicates 45 milleseconds (ms) are required, on the average,

to replenish the oxygen in the layer immediately around the cell. This

compares to independent measurement which indicates that the uptake process

requires 10-100 ms. Both time and scale considerations thus are shown to

lend support to their hypothesis that 02 uptake is at least partly limited by

convective mixing in the layer of fluid immediately adjacent to the cell wall.

ORIGINS OF TURBULENCE

In the description of turbulence, it was noted that it is an

ubiquitous property of almost all natural flows. It is of utmost importance

in many processes due to its superior mixing and transport properties, while

at the same time being very difficult to work with quantitatively due to

its random nature. Two questions remain to be dealt with in this module:

what is the origin of turbulence, and how can we quantify the transport

which results without being overwhelmed by intractable complexities.

As discussed by Vennard and Street (1975) and Cowan (1979a), there are

two flow regimes of interest in physical and biological processes: laminar

and turbulent. Laminar flow is smooth, orderly and predictable, in contrast

to turbulent flow. For a given flow geometry, one can predict by the value

20
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of the Reynolds number (Re) whether the flow is laminar, turbulent, or in a

state of transition. The Reynolds number is a combined measure of fluid

velocity, viscosity, density and a characteristic dimension. In essence,

laminar flow becomes turbulent when small perturbations or instabilities in

the flow are provided with a sufficient input of energy to grow and destroy

the orderly nature of the laminar flow. In any given situation, one can think

of an increase in the Reynolds number as a velocity increase, since the other

parameters presumably would not change. A large Reynolds number corresponds

to a large velocity and thus a large energy input. Therefore beyond some

critical point, a large Reynolds number indicates that the flow instabilities

will be able to grow and cause the flow to become fully turbulent. The flow

geometry, including the roughness of any surfaces in contact with the flow,

can have a dramatic effect on the values of the Reynolds number which define

the transition zone between laminar and turbulent flow.

Viscosity and Laminar Shear Flows

As has been indicated, a source of energy is required to cause turbu-

lent flow. Indeed, turbulence requires a continuous energy input, otherwise

it rapidly decays due to frictional losses as a result of the viscosity of the

fluid. Two sources of energy input exist to maintain turbulence in common

flows. The first source is shear in the mean flow, where friction between

the surface and the fluid causes energy from the mean flow to be diverted into

the creation of turbulent velocity fluctuations. The second source derives

from the heating of the fluid at the surface, which causes the fluid to rise

generating turbulence. These mechanisms are known respectively as mechanical

and thermal (convective, buoyance driven) turbulence. To gain some insight

into these turbulence maintenance mechanisms, a fundamental understanding of

21
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viscosity and shear flows is essential, starting with laminar flow and

progressing from there into the more complex turbulent flow case.

Consider the laminar flow of a fluid over a smooth horizontal surface

as depicted in Fig. 5. Observations reveal that a velocity profile exists

2 S
v+dv

11111 a
.11/4111

1

efigNIMwo MIVENNI

V

dy

4

/ / / / v=0 / / / / / I / / / I / I /

Figure 5. Laminar shear stress (T) between two regions, where velocity (v)
depends on distance (y) from the bottom, after Vennard and Street (1975).

over the surface. In this case, from a condition of zero velocity right at

the surface, the velocity increases with distance from the surface, indicating

that there is relative motion between fluid layers. This is illustrated by

consideration of the two infinitesimal fluid layers in Fig. 5. Two particles

(1 and 2) in adjacent layers move distances of vdt and (v+dv)dt in the time

interval dt. Thus we say that the fluid is sheared because the slope of a

line connecting points 1 and 2 tends to increase with time. It should be

evident then that a frictional force must exist between the fluid layers,

otherwise the velocity profile would be uniform right down to the surface.

This frictional force produces a shearing stress (T), and this stress has been

found by observation to vary linearly with the velocity gradient (dv/dy in our

example). The constant of proportionality in this relation is termed the

4'2
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viscosity coefficient (p), and we may write the relationship, known as Newton's

law of viscosity, as

dv

P c7

Viscosity is the result of molecular momentum exchange (a subject discussed

subsequently in the discussion of mixing length theory) and cohesion between

fluid layers, giving rise to the tangential shearing stress. Most fluids of

interest here (e.g., air and water) obey the above relation, and are known as

Newtonian fluids. (See e.g. Vennard and Street 1975, p.16 ff for a more

detailed discussion.)

Although most flows in nature are turbulent, there are notable

exceptions. For example, Cowan (1977b) treats the flow environment of

plankton. Their movement can be closely approximated in many cases by

treating the flow they encounter as laminar. (With their small diameter

and sinking velocity, the Reynolds number here is quite small.) However,

as is pointed out, the sea itself may be turbulent, as most flowing water

certainly is (see Cowan 1979b or Ealgeson 1970), which may invalidate this

simplified approach in some applications.

Turbulent Shear Flow

As has been described earlier (see also Tennekes and Lumley 1972

or Cowan 1977), turbulent flow is a random and irregular variation of velocity

which can be thought of as being superimposed upon a steady mean flow velocity.

The concept of an eddy was used to visualize that part of the flow responsible

for this variation. It seems apparent that the preceding analysis of laminar

shear based on only molecular interactions is not suitable for a similar

treatment of turbulent flow. We will find, however, that for partical applica-

tions at least, many similarities are evident.



www.manaraa.com

-19-

a

-1-7.+Av li fluid layer 1

w
1

fluid layer 2

Figure 6. Turbulent shear stress, after Vennard and Street (1975).

Figure 6 represents a turbulent velocity profile, in this case for

the mean horizontal velocity, as indicated by the over bar (V). Notice that

the portion of the profile near the lower boundary (again a flat, horizontal

surface) has been omitted. This is due to the fact that in actuality a thin

layer of laminar flow exists right next to the surface, which breaks down

into turbulent flow immediately above. This leads to two different profile

shapes, the laminar portion being omitted in Fig. 6 by excluding the lowest

segment of the profile. (Boundary layers will be discussed in a later

section; see also Monteith 1973 or Vennard and Street 1975). To visualize

shearing stress for turbulent flow, we will consider the basic unit of

transport to be the eddy, rather than the molecule. These eddies are

randomly moving up and down between fluid layers with velocity w. We will

assume that an eddy moves an average distance k before it breaks up and loses

its identity. (Notice the analogy here between R. and mean free path of

molecules.) The important point is that eddies with mean velocities of v and

v+Av are being transported up and down, carrying with them their cargoes of

momentum into regions with velocities of v+LCCT and v, respectively. This

implies that momentum is exchanged between layers.

To be more explicit, consider an eddy or fluid parcel of average

velocity v which through turbulent motion moves up into a region of average

2 4
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velocity ;4.E;. This parcel eventually mixes with the fluid in the higher

speed layer, slowing it down. The converse is true for fluid moving from

regions of higher to lower velocity. The net result tends to speed up the

slower layer and slow down the faster layer, which is exactly what happens

in the laminar case described earlier under the action of a shearing stress.

Thus we see that the existence of a shearing stress in turbulent flow can

be deduced from the random motion of fluid parcels and the resultant momentum

transfers (Vennard and Street 1975, p. 302 ff).

The growth and maintenance of the flow instabilities which lead to

turbulent velocity fluctuations depend upon a continuous energy input. In the

preceding section, it was described generally how, due to friction, energy

is diverted from the mean flow to turbulent production. As a matter of fact,

at the present time a fairly complete understanding of this mechanical

turbulence exists. On the other hand, the energetic connection between

buoyancy (convection), the other main source of turbulence, and turbulent

velocity fluctuations is not nearly as well understood. The basic process

involves the temperature fluctuations in the air causing corresponding density

fluctuations. The result is relative motion of these different temperature

air parcels, giving rise to the fluctuating velocities characteristic of

turbulence. In any event, exactly how the turbulence and either the mean flow

or the buoyancy are coupled energetically is beyond the scope of this treatment

(see Tennekes and Lumley 1972, p. 59 ff). It must suffice at this point to

state that the preceding treatment of shear flows and momentum transfer is an

essential ingredient to the proper understanding of turbulent production, as

well as having other important applications.
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THEORIES OF TURBULENCE

Businger (1973) states that "the primary objective of the study of

turbulence in the atmospheric boundary layer is to obtain tractable expressions

for the fluxes of heat, momentum, water vapor and other atmospheric consti-

tuents." This is true not only for large scale interactions of, for example,

weather systems with the earth's surface, but also on smaller scales, such

as the heat balance of exposed animals or the carbon dioxide exchange of a

plant leaf. We are of course not limited to atmospheric flows. Turbulent

fluxes are also important in the marine or aquatic environment, where we

might include such things as nutrient fluxes, or the "fluxes" of the organisms

themselves, borne about by the currents. An interesting example of this

latter phenomenon is the formation of cold-core rings, which are giant eddies

which break off from large meanders of the Gulf Stream (Wieke, 1976).

Ranging up to 300 kilometers in horizontal extent, these eddies form around

a "core" of seawater of different origin, and persist for up to two years.

Consequently, they are of great ecological importance, since they represent

a large scale intrusion of one oceanic community by another (the one surrounded

by the eddy). It is thought that a better understanding of the factors which

ultimately limit the distribution of oceanic, planktonic organisms may be

gained by study of such structures.

Despite the importance of the study of turbulence for the various

types of flow encountered in nature, in most cases rigorous analytic solutions

do not yet exist. The equations of motion previously referred to should in

theory describe turbulent flow in detail, but the extreme nonlinearity of the

equations plus the randomness of turbulent flows makes this approach

infeasible at present. Consequently, most theories of turbulence are

26
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semi-empirical in nature. That is, they are based on a theoretically sound

base, such as the Navier-Stokes (N-S) equations, but also rely on empirical

assumptions about the processes involved to complete the theory. In short,

unlike the case in many other physical theories, the equations do not tell

the whole story of turbulence. Rather, the key to success appears to be the

inventiveness of the researcher in applying the crucial simplifying assumptions.

This is the problem and challenge of turbulence research.

It is due primarily to this very inventiveness that the uninitiated

often find themselves awash in a sea of seemingly ad hoc assumptions and

oversimplifications if they should attempt to read the turbulence literature.

But, as in much scientific writing, a certain level of prior knowledge of

the subject is usually assumed. While a thorough understanding of this

"background material" is appropriate to textbooks on the subject, this paper

attempts to deal with some of the most common material. Since we are

primarily interested in calculating fluxes, it is appropriate that this final

section deal with flux estimating procedures, drawing upon prior developments

in this paper to link the procedure to the theory and phenomenon of turbulence.

Reynolds Averaging

Most semi-empirical theories are based upon a set of equations derived

from the N-S equations called the Reynolds equations. The derivation is

straightforward, and involves dividing the motion into its mean and fluctuating

parts (see Cowan 1979a or Tennekes and Lumley 1972). The variables of interest

are the pressure and the three velocity components. As an example, consider

the decomposition of the velocity in the x-direction,

u = u + ul . g7,)Y
ov I
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The overbar refers to the time average in the case of steady flow (see Cowan

1979a or Vennard and Street 1975), and the prime refers to the fluctuation

around the mean (Fig. 7).

time

Figure 7. Velocity components--fluctuations around the mean.

The four expressions so derived are substituted into the N-S equations, and

the resultant equations are then averaged over time, producing the Reynolds

equations. This process is called Reynolds averaging, and it removes the

rapidly varying nature of the N-S equations, at the expense of the addition

of other terms. The net result is to introduce more unknowns (through the

additional terms) than there are equations, making unique analytical solutions

impossible. This so-called closure problem of turbulence is what leads to the

necessity of introducing empirical equations for the extra unknowns, as was

discussed earlier. Investigations of such empirical methods comprise a major

part of the study of turbulence.

As a practical example of this, let us consider flow in the atmospheric

surface layer. Assume that the mean wind CO is in the x-direction, and write

the resultant simplified Reynolds equation for the x-component (Tennekes and

Lumley 1972, p. 30ff).

du___1dP 9 tau
dt p dx +rz, u`wi +

p 3z
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Here p is air density (assumed constant), P is wean air pressure, w is vertical

velocity, and u is air viscosity (also assumed constant). Each term has the

units of acceleration. The first term on the right represents acceleration

due to pressure gradients. The first term in brackets is the "additional"

term introduced by Reynolds averaging, and it represents acceleration due to

turbulent shear stresses (see the section on Turbulent Shear Flow). The last

term in brackets accounts for acceleration due to viscous (laminar) shear

stress, which, as may be surmised from earlier discussion, is negligible

compared to turbulent shear stress (except right at the surface, in the

laminar boundary layer). We recognize that, using equation 3, we could

rewrite the bracketted portion of equation 4 as

1
- Pu w

1
T .

One would then be tempted (if he were also a turbulence researcher!) to

assume that the first term also represents a stress Tt, possibly due to the

turbulence*:

T
t
= -p . (5)

In fact, it turns out that equation 5 does not represent the contribution of

the turbulent motion to the mean stress. This was discussed in the section

on Turbulent Shear Flow, but further -development is warranted here.

An averaged product of fluctuating variables such as equation 5 is

called a correlation. If the variables in such a product have the same

(opposite) sign for most of the time as do a and b in Fig. 8, then the

product is greater than (less than) zero. Notice that the variable c, on the

other hand, is uncorrelated with either a or b, hence the products ac or be

*Tit is a subscripted stress and does not represent a time derivative.
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Figure 8. Variables and b are correlated (adapted from Tennekes and Lumley 1972).

probably equal zero. In terms of u' and w', this means that if the vertical

wind fluctuations are positive (upward) when the horizontal wind fluctuations

are negative, and vice versa, then u' and w' are negatively correlated, hence

the minus sign in equation 5. Such an interpretation also agrees with the

turbulent velocity profile in Fig. 6 and the subsequent discussion.

Momentum is constantly being transported downward (or momentum deficit is

being transported upward). The end result is that the surface absorbs

momentum from the flow, and consequently experiences a frictional force

acting in the direction of the flow. As required by Newton's Third Law,

this force is opposed by frictional drag exerted on the air by the surface.

In practice, expressions such as equation 5 are used in the actual

measurement of surface fluxes in the atmosphere. It has been found that the

fluctuating horizontal velocity term (u') can be replaced with the fluctuating

30
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component of virtually any trace constituent (such as water vapor or CO2),

thus obtaining the flux of that quantity. However, an emphasis on obtaining

the maximum amount of information with the minimum amount of measurement

precludes use of this correlation technique in most biological applications

at present. This is due to the fact that the quantities to be measured are

generally varying quite rapidly, so that a measurement and multiplication

must be accomplished up to ten times a second. The next section introduces

a more common general method of flux determination, which though simpler

loses some of the insight into the actual physical processes which the

correlation approach provides.

K Theory

Recall the discussion of the section titled Origins of Turbulence,

in particular the similarities pointed out between turbulent and laminar shear

stress. These similarities, in addition to the complexity of the equations

of motion, make it tempting to write the expression for turbulent stress in a

manner analogous to equation 3,

T
t
= pK .

dy
(6)

As the previous section demonstrated, such an assumption considerably

simplifies the mathematics. In addition, it turns out that in many cases

of substantial practical interest, such an approach has adequate predictive

abilities. However, several objections can be raised to these so-called

"K-theories." First of all, it must be remembered that viscosity is a

property of the fluid itself, depending basically upon its molecular makeup.

Turbulence, and hence the "eddy viscosity" (K) in equation 6, are properties

of the flow, and do not depend on the fluid. A perhaps more subtle

31.



www.manaraa.com

-27-

distinction is that the time and length scales of turbulent flow are generally

of the same order of magnitude as those scales representing the distribution

of the property of interest, while the scales for molecular diffusion are

much smaller. Thus the similarity of turbulent and molecular diffusion must

be approached with caution (Lumley and Panfsky 1964). So while the adoption of a K

theory formulation implies that the attempt to understand the turbulence has

beei de-emphasized; the success that K theories have enjoyed in certain useful

applications have made them a valuable tool.

It is-useful to again use the tool of dimensional analysis to extend

the discussion of the section titled "Diffusivity" and derive a dimensional

estimate for K. Analogous to the development of equation 1, one may write

a time.scale_for turbulent diffusion (T
t
) as

T L2
t K ,

where Km is the eddy diffusivity for heat analogous to y, the thermal diffusivity

constant. It is reasonable to require that this time be of the same order as

the characteristic time defined in equation 2. Thus we can write

T
L 1

t K.. U
11 C

which gives us the following expression for KH:

KH UcL (7)

biffusion type equations may be written for quantities besides heat,

including mass and momentum. Hence expressions such as equation 7 are perfectly

general, and one finds them frequently in applications.

3,
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Let us illustrate a common method of utilizing an expression like

equation 7 in practical applications. The previous discussion of atmospheric

turbulence suggests that the natural choice of a length scale for a wall-

bounded flow would be the distance from the surface to the measuring piont, z.

Recall that this can be thought of as he size of the most efficient energy

transporting eddy. u*, the so-called friction velocity, is the velocity scale

used. It is defined by the expression

T = pU*
2

, (8)

which can be easily shown to be correct dimensionally. Qualitatively, it can

be thought of as the tangential rate of rotation of the eddies. In this way,

it can be related to the expression for dynamic wind pressure in Bernoulli's

equation, 1/2pu2 (see,e.g., Vennard and Street 1975). Also, there is the relation

KM = ku*z (9)

where KM is the eddy transport coefficient of momentum of eddy viscosity and

where k has been shown experimentally to be a constant, approximately equal to

0.4, and is known as von Karman's'constant.

Normal practice in micrometeorology, for example, is to substitute

equations 8 and 9 into the gradient relation (equation 6) and solve for u*,

u
Ti

=
*

kz
d

dz
(10)

This of course is-tantamount to finding T. U* is important in certain mean

gradient methods for finding the fluxes of heat and mass, notably the aero-

dynamic method (see, e.g., Campbell 1977 or Monteith 1973 or 1975) and the

combination or Penman type methods. A particularly lucid exposition of these

methods as applied to evapotranspiration can be found in Chapter 3 of
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Taylor and Ashcroft (1972). It should be apparent from the one-dimensional

nature of equations 6, 9 and 10 that we are considering transport to be

occurring in only one direction, normal to the surface. This is the case

when we consider flow over an essentially infinitely long, horizontal and

homogeneous surface. Transport to or from small objects such as animals

requires a different approach.

Boundary Layers and Non-dimensional Numbers: A Bulk Approach

Implicit in the present treatment of turbulence has been the proximity

of a surface to the flow. As discussed previously, much turbulence originates

at surfaces. Out of the main sources of turbulence is the friction between

the fluid and the surface (mechanical turbulence). Another important source

is due to heating of the surface, which transfers heat to the fluid, causing

the less dense, heated fluid to rise (thermal turbulence). If there is

bulk movement of the fluid, mechanical turbulence is present, but of course

only in the area where the frictional influence of the surface is important.

This region of surface influence is known as the boundary layer. It can be

characterized by a boundary layer depth, which corresponds to the streamline

along which the velocity reaches 99% of the free stream velocity (see Fig. 9).

This latter velocity is the one which characterizes the fluid away from the

retarding influence of the surface. Notice in Fig. 9 that the flow is

initially laminar, changing to turbulent, with a transition region of mixed

laminar and turbulent flow called the viscous sublayer. This flow structure

is due primarily to the fact that the fluid layer immediately next to a

surface has zero velocity with respect to the surface, and the flow must

adjust itself accordingly. See Vennard and Street (1975) or Monteith (1930)

for a further discussion of boundary layers.
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Figure 9. Visualization of the development of the boundary layer velocity profile. From left to right,

the initial uniform velocity bows a lamin # 111 f... -hthe surface,

eve ops nto a turbulent layer if the Reynolds number is large. From Vennard and

Street 1975, p. 312,

35 36



www.manaraa.com

-31-

K theory, or the gradient approach, requires measurements to be taken

in the boundary layer region, an approach especially suitable where the

boundary layer is extensive, such as in wind flow over the earth's surface.

However, measurements within the boundary layer become extremely difficult

around small objects, such as animals or leaves. Due to the complex geometry,

mall size and many possible orientations with respect to the wind for such

objects, it becomes practically impossible to define where the boundary layer

is, let alone take measurements there. Consequently, in the case of small

objects, a bulk approach is taken. Measurements of the property being

transported are taken in the environment, far enough away so that the surface

does rot influence the flow, and at the surface itself. This approach is

practical here because for small objects the boundary layer is sufficiently

thin for this difference in properties to be clearly defined.

The bulk approach is actually an integrated form of the gradient

approach (Businger 1973) and thus is still based on the same molecular analogy.

Taking heat transfer as an example, one may write the flux of heat (FH) for

a still fluid as

F
H 6

= (T
o
-T )k

where k is the thermal conductivity of the fluid, 6 is the uniform boundary

layer depth, and To-T. is the difference between surface and environmental

temperatures, respectively. Equation 11, as presented, is exact in its

description. In the more general case, where the fluid can be in motion, the

boundary layer may be turbulent and of variable depth and structure. In this

case, y becomes a sort of average or equivalent boundary layer depth, not

directly measurable. An empirical approach has been proposed (Monteith 1973)

which is well borne out by experiment. First, write equation 11 as
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F
H d d

= (d
k

) (T
o
-T

co
)

'

(12)

were d is a characteristic length (e.g. the diameter of a sphere or cylinder,

the length of a flat plate in the direction of flow). Then rearrange

equation 12

d
F
H

Nu -
d -(k/aTo-T03) (13)

This is the defining relation for the Nusselt number (Nu). When determining

the heat flux, equation 11 would normally be written

F
H

= Nu(k/d)(I -T
co

)
o

(14)

Notice that all quantities on the right-hand side of equation 14 are directly

available except Nu. If equation 14 is to be of any more practical use than

euqation 11, a means of determining Nu is required.

Equation 13 points in the general direction of the method used to

find Nu. It can be regarded as a purely empirical constant, and under

suitable conditions F
H

and k/d(T
o
-T ) can be determined independently for

different conditions of flow and geometry, and its values tabulated. It turns

out that for a given geometry and orientation to the flow, Nu can be written

Nu = A Re
n

(15)

for forced convection. Thus, once A and n are determined for a particular

geomctry and orientation, Nu is calculable. This should not be surprising,

since Re is an indicator of turbulence, and it has been demonstrated that Nu,

an indicator of heat transfer, is a function of the degree of turbulence.

Notice also that equation 15, by use of Re instead of just the velocity, has
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taken into account the effects of fluid viscosity and characteristic length

of the body, making A and n independent of body size.

This dependence of Nu on Re indicates that Nu is not "purely

empirical." Consider the ratio in the defining relation of equation 13,

,k
FH ta (T -T ). This can be thought of as the ratio of actual heat flux (F

H
)

to that which would result in a stationary fluid layer of depth d due to the

same temperature difference (To-T.). Thus, for a still fluid layer over a

flat plate, we would expect Nu=1. Heat transfer is of course more efficient

in a flowing fluid, especially, as discussed earlier, if the flow is turbulent.

Therefore we would expect Nu>1 in these cases. Nu is also a function of

geometry. For example, Nu=2 for a sphere in a still fluid (see Businger 1973,

p. 68 for a derivation). In practice, then, we find different geometries

(and orientations) treated separately. Note, however, in Fig. 10, that

geometry is not extremely critical, e.g. a man and a sheep behave essentially

as cylinders. Another nondimensional number, the Grashot number (Gr),

assumes the place of Re for the free convection case.

A convenient tabulation of various dimensionless numbers is in

Campbell (1977, p. 65). Monteith (1973, pp. 224-225) tabulates Nu for forced

and free convection, various geometries, and ranges of Re (or Gr). Part of

this table is reproduced in Table 1. Using the information there, in conjunc-

tion with equation 14, one can obtain estimates of heat flux for various body

geometries, wind speeds, and body size. The quantity Nu d is related to

similar terms used by various authors such as the heat transfer coefficient

(h) and the exchange resistance (r) by the expression

pc

Nu = h =

where p is fluid density and cp is specific heat.
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Table 1. Nusselt numbers for air: forced convection

From Monteith 1973, p. 224

Shape Case Range of Re Nu

(1) Flat plates

d

Streamline flow
Turbulent flow

<2 x 104
>2 x 104

0.60 Re's
0.032 Rem

(2) Cylinders

Narrow range of
Reynolds
numbers

1 - 4
4 - 40
40 - 4 x 103

0.89 Re.33
0.82 Re.33
0.62 Re/3'47

d

4 x 103 - 4 x104 0.17 Re"
4 x 104 - 4 x 105 0.024 Remi

Wide range of or
Reynolds 10-1 - 103 0.32 + 0.51 Re.si

(3) Spheres numbers 103 - 5 x 104 0.24 Re's°

0 - 300 2 + 0.54 Re"
50 - i 5 x 105 0.34 Re"

Notes: (i) Arrows show direction of airflow.

(ii) d is characteristic dimension; take width of a long crosswind strut
as shown or mean side for a rectangle whose width and length are
comparable.
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RECAPITULATION

The primary purpose of this module has been to acquaint the reader

with enough of the rudimentary aspects of the theory of turbulent fluid flow

to provide a basis for discussing fluxes of mass and energy between organisms

and their environment. An attempt has been made through the use of examples

to relate this development to processes of significance in biology. An intro-

duction to the two major semi-empirical applications of turbulence to expres-

sions for the fluxes of such quantities as heat, momentum, and mass lays the

groundwork for a more comprehensive treatment of exchange processes. A major

stumbling block to the uninitiated is the use of strange terminology and

many seemingly ad hoc assumptions in treatments of turbulent exchange. It is

hoped that this module has cleared up some of that "mystery" and provide a

sound base for further discussion.
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PROBLEMS

1. What is the Reynolds number for an elephant in a 0.1 and a 10.0 m s-1

wind? (Make your own estimate for d.)

2. Given the set of equations below, solve for the unknowns x, y, z.

x + 2y + 3z = 10

4x - z = 2

3. Refer to the discussion at the end of the section titled "Diffusivity"

concerning diffusive resistance to blood uptake. It was stated there

that eddy size (d) and rate of diffusion are inversely proportional.

It has also been observed that as the Reynolds number for the flow

increases, the mixing rate of the flow increases while at the same time

so does the eddy size. To resolve this apparent contradiction, complete

the following table and comment on your results in light of the conflict.

Mean flow velocity

Re

u

3000

1.6 cm sec
-1

6000

Typical eddy size 0.8 mm 1.0 mm

Relative velocity fluctuation u' /u .0242 .0229

Eddy time scale T

Notice that u' represents the RMS (root-mean-square) value of the

velocity fluctuations about the mean u. As such, it can be interpreted

as the rotational velocity, on the average, of the eddies.

4. Solve (10) in the text for u as a function of z. Use as limits of

integration z=0 and z=z. What.are the corresponding limits for

15
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velocity? (Hint: remember the "no slip" condition.) What problem

arises at the lower limit (z=0)? To remedy this, assume that u=0 at

z=z , where z
o

is a small distance above the surface.

Assuming that k=0.4, zo=1 cm and u*=0.2 m s-1, plot u (horizontal

axis) versus Raz. What is the potential significance of a plot such as

this?

5. Given the following conditions, solve for the heat transfer from a leaf

using (14), (15) and Table 1.

Re =
ud

v = 151 x 10-7 m2 s-1 (kinematic viscosity of air)

d = characteristic length = .042 m

ue, = average velocity = 3 m s
-1

= thermal conductivity of air = 26 mW m-1 °C-1

Leaf temperature = 30°C

Air temperature = 20°C
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4H
PROBLEM SOLUTIONS

.d
1. Re =

t

(10 m s-1)(3 m) = 30
= 2 x 10

6

1.5 x 10
5
m
2

s
-1

1.5 x 10
-5

For V = 0.1 m s
-1

, Re = 2 x 10
4

.

2. Solve the second equation for z:

3.

z = 4x - 2 .

Substitute this expression into the first equation:

x + 2y + 3(4x-2) = 10 or

13x + 2y = 16 .

As was probably obvious from the outset, no solution is possible without

some further information about either x, y or z; i.e., we need a third

equation. This is an illustration of the so-called closure problem in

turbulence which occurs with the Reynolds equations. In simple terms,

this problem is "solved" by adding a third empirical equation; one

derived from observations, not theory. Thus, if it is observed that

usually x=-2, then we may solve the system of equations: y=21, z=-10.

Of course, our final answer is in general only as good as the validity of

our assumption that x=-2 for any given case.

Re 3000 6000

u 1.6 cm s-1 3.2 cm s-1

d 0.8 mm 1.0 mm

u' /u .0242 .0229

T 50 ms 33 ms
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Two things are of importance to note. First of all, since Re is propor-

tional to velocity, and from the problem statement it is fair to assume

fluid viscosity, density and flow geometry have stayed the same. It is

safe to surmise that u doubled when Re was increased from 3000 to 6000.

Secondly, while d increased with Re, which tends to oppose mixing, T

decreases in larger proportion. In a similar line of argument to that

of the text, we may argue that T gives an indication of the life span of

the average eddy of size d. Over a time equivalent to several time

scales, an eddy can be expected to have become completely mixed with

other eddies. Thus, apparently the decrease in T more than makes up

for the increase in d, so that mixing becomes more efficient as Re gets

larger.

4. Equation (10) is u* = kzdz

k dz
rearranging terms du =

u*

u
f f

integrating u f du = J
UZ

* 0 0
z

ku inz - in° .

u *

But, in0 is infinite, so we introduce a small constant called the

surface roughness ,(z0)', and integrate from z=z
o

t zz. Thus, we are

saying that the velocity is zero a small distance (z0) above the surface

u u = inz - inzo = in( z )
*

zo
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u(z) = kn(z/.01)

z
o
= .01 t nz

o
= -4.61 0

.1 -2.3 1.15

1 0 2.30

10 2.3 3.45

0 1 2 3 4 u(z)

5. Re =
ud 3 m s

-1
x .042 m
-7 2 -1

8.3 x 10
3

151 x 10 m s

.

Nu = ARe
n

= .6 Re°
5

= 55

-1 o
F
H

= 55 x 26 mw mc-1
.042 m

(30-20)°C

= 339000
14

= 339
m2
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APPENDIX: Symbols, Units and Dimensions

Symbol Definition Units Dimension

A Constant Dimensionless ft__

c

P
Specific heat J kg-1 K-1 12T-20-1

d Characteristic dimension m L

F
H

Heat flux J
s-1 m.2

MT-3

Gr Grashof number Dimensionless ft__

H Height
cm L

h Heat transfer coefficient J
ri 0 Kft1 try'

Eddy viscosity m
2
8
-1K

L2T-1

Eddy diffusivity for heat m
2

S
-1

L2T4

Eddy viscosity m2 8-1 L2T-1

K von Karmen's constant Dimensionless

L Length 1 L

Nu Nusselt number Dimensionless - --

n Constant Dimensionless .....

P Mean air pressure kg el s-2 Mr1T-2

....

Z Height m L

5$)
51
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APPENDIX (cont.)

Symbol Definition

n

T
t

p

Thermal diffusivity

Uniform boundary layer thickness

Temperature

Small scale eddy size

Shear stress

Shear stress attributed to turbulence

Density

Dynamic viscosity

Units

m
2

S
-1

°C

Dimension

L2T -I

L

8

L

ML-IT-2

ell '2

ML-3

ML -1T-1



www.manaraa.com

2.4

2.2

2.0
00
0

1.8

1.6

-34-

Reynolds number

00o
w

ul

000
a0

,-t

000.0
cv

000
a0

Ul

000
00
,-t

/

3.5 4.0 4.5 5.0

log (Re)

200

100

50

Figure 10. A plot of the Nusselt number versus the Reynolds number compares
convective heat transfer from a man (- -) and a sheep ().
The data are fairly close to theoretical calculations made for a

cylinder From Monteith 1972, p. 111.
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